4., V. G. Tonkonog, "Flow of a vaporizing liquid in channels of different shape,™ Author's Abstract of
Candidate's Dissertation, Tupolev Aviation Institute, Kazan (1975).

5. E. Klein, Cavity Formation in the Case of Tube and Jet Flow [in German], Research Report DFG, Cavi-
tation, Boppard (1974).

6. M. A. Koronkevich, "Discharge characteristics of Laval nozzles during flow of boiling water," Preprint
15-77, Institute of Thermophysics, Siberian Branch, Academy of Sciences of the SSSR, Novosibirsk
(1977).

TURBULENT FORCED FLOW AND HEAT EXCHANGE
IN VERTICAL CHANNELS IN CONDITIONS OF
FREE CONVECTION

A. F. Polyakov UDC 532.517,4:536.24

Based on a unified approach, data are analyzed and generalized concerning the distributions of
velocity and temperature, frictional resistance and heat transfer in the case of turbulent free-
convective flow, and forced flow in conditions of the significant effect of the gravitational field,

Turbulent forced flow in vertical channels from below upwards with heating, and from above downwards
with cooling, is considered under the conditions of action of the gravitational field. We call the limiting case
of the very strong effect of buoyancy, the "free convection mode. "

First of all, we consider free turbulent convection close to the vertical surfaces from the general posi-
tions of the boundary flows.

In the first place, we will be interested in a boundary condition of the second species, and therefore
we describe the dimensionless numbers related with the thermal effect by the quantity q.. However, heat ex-
change in the case of turbulent forced flow is almost no different with the boundary conditions q; = const and
te = const. Even the turbulent free convective flow is quite conservative during transition from the boundary
condition q¢ = const to te = const. In particular, the data of a number of papers confirm this, showing the
independence of the heat-transfer coefficient @ = q¢/(tc — tw) on the longitudinal coordinate x, i.e., for a speci-
fied constant value of q¢ or tc the other quantity correspondingly is also constant,

In Fig. 1 the temperature distribution in the case of forced turbulent boundary flow of air [1, 2] and tur-
bulent free convective flow of air along a vertical plate [3] are compared in the universal coordinates T 1.
In [3] the tangential stress on the wall 7o was measured so that the friction velocity v« is determined by the
experimental data, It can be seen that the temperature distribution in universal coordinates in the case of
free convection coincides with the temperature distribution in the case of forced flow without the effect of
mass forces. This distribution is described by the following interpolation relation:

TF = 2.2In (14-0.45Pr n) - (13Pr*'® — In Pr — 4) [1— exp (— Pr®* ' -%/50), (1)

corresponding with an accuracy of + 7%to the most reliable experimental data assembled in [1, 2, 4, 5], and
the results of calculations given in these papers, over the range of Pr values from 0.02 to 64,

In [6], for Pr = 16, the relation
'tC
P [Bg (t, — 1) vI'°

= const 2)

is obtained, from which it follows that

Gr, Ti/x} Pr=A-.0.18, (2a)

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 5, pp. 801-811, November, 1978. Origi-
nal article submitted November 24, 1977.
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Fig, 1. Temperature distribution for Pr = 0,7, Experimental data:
1-3) forced flow in tubes, Gr —0, Re = 7.1-10* [1], Re = 2,5-10% [1}],
Re = 1,8-10° [2], respectively; 4) free convective streamline flow
with a vertical surface [3], Gry = 2 - 10'%; 6) forced flow, Re = 9.8
103, E =1.9-10"% [{15). Calculation: 5) by Eq. (1), Gr — 0; 7) by Eq.
(30, Re = 10%, E = 1.9-1078,

Fig. 2. Velocity distribution: 1) Gr = 0, calculation by Eq. (7a). Ex-
perimental data: 2-4) forced flow in tubes, Re =5-10%, Pr = 0,7; E =
5.1-1078 [17], 1.8.10"7 [16], 1.8~ 1077 [15], respectively; 6P) free con-
vective streamline flow with a vertical surface [3], Gryx = 2 10'%, Cal-
culation: 2P, 3P) by relation (7b) for the parameters corresponding
to the experimental data 2, 3; 5P) by Eq. (7b) for E =10%; 6P) by Eq. (7).
where

T. =22Inn, — 12.7Pr%% -6, (1a)

is obtained from Eq. (1) for large values of n and Pr > 0.6. From the data of {3] for air (Pr = 0.7), it follows
that A = 0.07.

Thus, A is a function of the Pr number, which on the basis of these data and data on the heat transfer
can be determined as:

Gr, TZ'x! Pr=0.1Pr'"*, &)

The value of the dimensionless temperature difference between the wall and liquid at a distance from the
wall T, is related with the Nusselt number by the expression

q.x _ Prx,

T (te—ta)h T “)

u,

On the basis of the data given in [3, 7], the outer boundary of the free-convective turbulent boundary
layer n, can be described by the relation

n, = 0.16 Gra,” = 0.28Gr} * Pr'" 2. (5
From Eqs. (3) and (4) for the Nux number we obtain

Nu, = 1.8Pr® *Gr} ¥/ (T$)*. (6)

The calculation of the Nuy number by relations (6), (2a), and (5) coincides well with the experimental

data of [3, 6, 8], obtained over the range of Pr values from 0,7 to 16. In this case, the physical properties

are chosen for a temperature equal to the arithmetic mean value of the temperatures of the wall and at a dis-
tance from the surface.

Using the results of [3, 7], the velocity distribution can be approximated by the following relation:

LY

Ut - U — 2.5y (In Vo 9) — (2.5In 1, - 0.5) (1-0.23InY) for Y >0.015 , ™
(12v) for Y < 0.015
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where the velocity distribution U for forced flow in universal coordinates is described by a relation which
does not take account of a certain additional effect of the Re number close to the axis:

Ui = 2.5In (1+0.4) +— 7.8 [1— exp(— 0" 7/47)). (7a)

The velocity profile, calculated by interpolation equation (7), is compared in Fig. 2 with the experimen-
tal data of [3]. '

Relation (3), connecting the dynamic characteristics of the boundary free-convective turbulent flow, can
be written not in terms of the longitudinal coordinate x (parameters Gry and x+), but in terms of the thickness
of the boundary layer 6 (parameters Gr and n;). From this relation, for the case of flow in a channel in the
free convective mode, we determine the dimensionless radius 1, = v4d/2v:

n, = (T3 Gr/1.6 Pr*/%)!/*, (8

First of all we find the relation for the heat transfer and the frictional resistance in circular tubes, in
the free convection mode. Then, we generalize them and the data obtained earlier for the small effect of
buoyancy [9], on the case of change of the defining parameters from forced flow conditions to the free convec-
tion mode,

The free convection mode in the case of forced flow in vertical channels will be defined as the conditions
with combination of the direction of forced flow and the thermal boundary conditions, contributing to the de-
velopment of free-convective flow (e.g., flow from below upwards in heated tubes), when relation (8), which
is characteristic for free-convective turbulent flow, is satisfied,

Let us consider the flow at a distance from the origin of heating (cooling) for x/d > 40, when the heat-ex-
change conditions for turbulent flow can be assumed to be stabilized.

As shown above, the distribution of the dimensionless temperature T* for free convection and for forced
flow is described by one and the same expression (1). Consequently, there is every basis for supposing that
this same expression will describe the temperature distribution also in the free convection mode in the case
of flow in a channel.

We find the velocity distribution in the free convection mode by the relation, similar to Eq. (7):
= Ut + b[2.5Y (InY —2) — (2.5In 1, + 0.5) (140.23 In Y)}. (7h)

By comparison with Eq. (7), we introduce the coefficient b into Eq. (7b), equal to zero for forced turbulent flow
and with a certain limiting value bfe in the free convection mode.

We determine the Stanton number by the temperature and velocity distributions we have found, from the
equation
1
S——:ZSU*T*(]—Y)dY. 9)

0

L=

For integration, we use the simplified expression for the temperature distribution
T = 2.2Inq + 12,7Pr** —6 (1b)
and in the velocity distribution (7b), we use the simplified expression for
Uf = 25Inq + 5.5. (7¢)
Substituting Egs. (1b), (7b), and (7¢) in Eq. (9), integrating, and carrying out transformations and per-
missible simplifications, we obtain
1/St = 5.5In2n, -- 31.8 (Pr2/3 — 0.5) Inn, — 5[3,6In2n, — 20,3(Pr2/3 —0.37) (Inn, - 1.7) — 9.4. 10)
For b = 0, expression (10) describes the heat transfer for forced flow, without the effect of mass forces

StT, and for b= bge — the heat transfer in the free convection mode. The results of the calculation by Eq., (10)
for Pr > 0 6 and b = 0 and correspond well with the results of the calculation by the equation [10]

St, - &8, . (11)

900 +127VE8 (Pr2/3 —1)
(4
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Fig. 3. Dependence of the St number on E, I: Pr number of 6: 1,2,3,4,5,) experimental data
(18] for Re=(1.8-2.6)-10%, (3-5.2) - 103, (6-8) - 10°, (8.5-10,5) - 10%, and (1,2-1.5) - 10%, respec-
tively; I.1) calculated according to (33) for Re=10% L2) calculated according to (33) for Re =
5.10%; L3) calculated according to (23); L4) calculated according to (11) for Re=10%; L5)
calculation of the boundary of the initial effect of buoyancy according to the dependencegiven
in {9]; 1.6) calculation according to the interpolation dependence obtained in [19] for Re=300;
L.7) calculation according to (19] for Re=2-10%, II: Pr number of 0.7: 6,7, 8,9) experimental
data of (16] for Re=500, (1-2)-10%, (4-5) - 10%, (0.9-1.,3) -10%; 10, 11) experimental data of [15]
for Re=(5-7) -10° and 104, respectively; 12, 13) experimental data of (17] for Re=5-10° and
10%, respectively; IL.1) calculation according to (33) for Re=5.10% M.2) calculation according
to (33) for Re=10% IL3) calculation according to (23); IL.4) calculation according to (11) for
Re=5- 103; IL.5) calculation of the boundary of the initial effect of buoyancy according to the
dependence given in [9]; IL6) calculation according to the dependence for the viscous-gravi-
tational regime [14], Re=500; IL7) calculation according to (23); IL8) calculation according to
the dependence for laminar flow, Nu=4.36, X > 0,07; I1.9) boundary of the transition from
viscous-gravitational to turbulent flow, calculated according to the dependence obtained in [14].

In this case, the coefficient of frictional resistance ¢ is calculated by one and the same relation, e.g.,
by Filonenko's equation [11],

[1.821{; (-8_\”'_2. (12)

From the equation

using Egs. (7b) and (7c), we determine the coefficient of frictional resistance ¢:
V8% —2.5(In2n,) — 1.65b(In 5.2,). (13)

Expressing 1y in terms of the coefficient of frictional resistance
Re . “¢c,  Re’ T
o= g | R I/T (14)

1 85 —2.5(1—0.66b)In ) T8 - 2.5(1 —0.66b) In (Re 2) — 1.8 (1 — 1.5b). 15)

When b = 0, Eq. (15) represents the relation for the coefficient of frictional resistance, obtained by L. Prandt!
(see, e.g., [12]), which describes well the experimental data in the range 2.8°10° < Re < 107,

we write Eq, (13) in the form

In the range of variation of £ from 1073 to 0,3, the results of the calculations by Eq. (15) can be approxi-
mated by the expression

- 1.82(1—0.66b)(lg %?H_Z, 16)
which, for b = 0, converts to Eq. (12). _ -

Expressing the quantity Inny from Eq. (13) and substituting it in Eq. (10), we find the relation between the
St number and the coefficient &:
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0.68 1.9
_ 088 £ [127r25—0.88
1——0.66b+l/ [ ( oy

St =

(17

Values of the St number, calculated by Eq. (17). for b = 0 and Pr > 0,6, agree well with the values deter-
mined by Eq. 11), Bearing this in mind, we represent Eq. (17) in the form corresponding to the limiting transi-
tion for b = 0 to the well-known previous relation (11), i.e.,

St = &8 . (18)

T+ Re/900 +]27l/§ (Pr2/3 A L )
T1—0,660 1 —0.66b

The coefficient of frictional resistance in the free convection mode can be determined from Egs. (8) and

12):

S _ Tt
s_c“3°21/1:—rn°/—35’ (19)

where E = Gr/Pr -Re?,

In the range 0.6 < Pr < 100 and 100 < Re < 10°, calculations by Eq. (19) can be closely approximated in
the form

Ee= 120 VE. 20)
We express the quantity b from Eq. (16):
0.55
b=152 {1 — —n—""-—— )
( \'E 1g0.125 Re @1

Substituting the value of ¢fc from Eq. (20) in Eq, (21), we obtain the expression for b in the free convection
mode:

0.05
b, =152 (1 _ ) . 2)

E'/* g (Re/8)
Substituting in Eq. (18) expression (20) and (22), we obtain the relation for the Stfc number in the free convec-
tion mode:

El/4
_ 23
Stfe = T33(1gRe/8) £33 Pr23-0.7) ° (23)

Figure 3 shows the change of St as a function of the parameter E, for values of Pr = 0,7 and Pr = 6, In
the case of Pr numbers =1, a marked additional dependence on the Re number is observed, in addition to that
taken into account in the quantity E. For Pr > 5, the additional dependence on the Re number is insignificant.
For the values of Pr = 6 shown in the graph, the curves for Re = 500 and Re = 10* are very little different and
therefore only one line is shown, With relatively large values of E, a satisfactory agreement with the experi-
mental data can be seen. With reduction of E, the lines calculated by Eq. (23) are above the experimental
data. This is because with a relatively small degree of effect of the gravitational field on the turbulent forced
flow in vertical boundary flows, as was shown in [9], the buoyancy forces in the first place affect the turbu-
lence, which in the case being considered leads to reduction of the turbulent transfer. However, with in-
crease of E, the effect of buoyancy on the turbulence is weakened and its effects starts to appear more and
more directly on the averaged flow, leading to the free convection mode. Thus, if there were no buoyancy
effect on the turbulence, then the St number would vary according to the relations corresponding to the dashed
lines. If, further, the Re number corresponds to the laminar flow mode, in conditions where the gravitational
field effect is absent, then the effect of buoyancy will lead to the development of a viscous-gravitational flow
mechanism, which after the breakdown of stability will convert to the turbulent free convection mode. This
situation is shown in Fig. 3 for the case Pr = 0.7, Re = 500, and X = (1/Pe)(x/d) > 0.07. It is shown in [13] that
transition in this case from viscous-gravitational flow to turbulent flow takes place without a sharp change of
heat transfer. The boundary of the transition can be determined by the relation given in [14],
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Fig. 4. Graph of the coefficient of
frictional resistance vs the param-
eter E: 1) experimental data of [16]
for Pr = 0.7 and Re = (3.6-7) - 10%; 2)
calculation by Eq. (20); 3, 4) calcula-
tion by Eq. (28) for Re = 5+10% and
10%; 5) limit of start of buoyancy ef-
fect by Eq. (26).

As shown in [9], as a result of the action of thermogravitational forces on turbulent transfer, the values
of the velocity, represented in universal coordinates, are increased in the central part of the flow, As a re-
sult of this, the St number is decreased. If, in the transition region from the forced turbulent flow mode to
the turbulent free convection mode, we use expression (7c) for describing the velocity profile, then, by select-
ing values of the parameter b in an appropriate way, the change of the velocity profile due to the effect of buoy-
ancy on the turbulent transfer can be taken into account approximately.

We represent the relation for the parameter b in the form of a product
b = mby,, (24)
where m = 1 in the free convection mode and m = 0 for forced flow, without the effect of buoyancy.

By using expressions (24), (22), and (16), we obtain a relation for the frictional resistance in the case of
turbulent buoyant (descending) flow in vertical heated (cooled) tubes in the case x/d > 40:

1 E
33 (0 —mE " g B 0.05m| =
. e ?) - 0. amJ

With m = 0, -relation (25) converts to Eq. (12), and with m = 1 it converts to Eq. (20).

In [9] the limits of the start of the effect of thermogravitational forces on the frictional resistance in the
case of forced turbulent flow in vertical tubes are determined. We write the relation for the limiting Grashof
number obtained in it, in the form

E, — 2-10%Re! 33, 26)

where E; corresponds to the limiting value of the parameter E = Gr/Pr-Re?, for which thermogravitation
starts to noticeably (more than 1%) affect the frictional resistance. When E < E, this effect is negligibly
small and m = 0.

Using the limiting relations being considered for ¢ and the velocity distribution [15-17], the relation
m — (E Ej)>, [(E E,)? — 30] (27
is obtained for the parameter m,

Using expressions (26) and (27), we obtain from Eq. (25) the relation for the coefficient of frictional re-
sistance valid for Pr > 0.6 and Re > 3-10°, over the whole range of determining parameters, from the forced
flow mode to the convection mode,

< | I - 8.3 - 1G°Re?-°E?

2
1.82 (lg %_) -~ 7.6-104Ret 3EF.+ J

(28)
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Figure 4 shows the variation of the coefficient { as a function of the parameter E, calculated for two
values of Re =5+10° and 10, The agreement with the experimental data of [16], obtained for the free con-
vection mode, is satisfactory. The quantity § for E < E, corresponds to that calculated by Filonenko's
equation [11]. In the region of transition from forced flow conditions to free convection conditions, £ < £ and
¢ < ¢, and they depend significantly on both the Re number and on E. Values of the coefficient of frictional
resistance in the transition region are less than in the limiting cases, due to the reduction of turbulent transfer
of momentum as a result of the effect in this region of buoyancy on the turbulence.

Relation (7b), taking account of Egs. (7a), (22), (24), (26), and (27), describes approximately the velo-
city distribution over the whole range from "purely" forced flow to the free convection mode., Figure 2 shows
the velocity distributions for Re = 5-10%, calculated by these relations. The curve 6P corresponds to the
free convection mode. The line 2P corresponds to the conditions of the predominant effect of buoyancy -on tur-
bulent transfer. The calculated curves 2P and 3P coincide with the experimental data of [15-17). The experi-
mental data indicate a more complex variation of the velocity profile by comparison with the calculated curve.
The maxima on the velocity profiles occur considerably earlier than the calculation by relation (7b) gives. The
deviation of the calculated values from the experimental values at certain points in the core of the flow reaches
25%. However, the design relation (7b) correctly shows the tendency of the velocity profile variation by com~
parison with the case of isothermal flow (curve 1) as a function of the effect of buoyancy on the turbulent trans-
fer and directly on the averaged flow,

In the case of the action of the gravitational field on the turbulent transfer, the temperature profile in
the case of a low degree of the buoyancy effect is described by the relation obtained in [9]

TF T =~ " 29

where T?} is the dimensionless temperature in the case of "purely" forced flow, described by Eq. (1).

In order to find the St number by Eq. (9), together with Eqs. (7b) and (7¢) for the velocity profile, we use
a relation represented in the form

T =22Iny -127P*7 —6 By 2 —VY) (30)

for the temperature profile, where the value n = 2/3 is selected on the basis of the experimental data for the
temperature distribution and heat fransfer, and the parameter 8= 0 in both the free convection mode and for
forced flow without the effect of buoyancy.

The expression for 8 is determined on the basis of experimental data for the temperature and heat-trans-
fer distribution in [15-18], and also the relations obtained in [9], describing the limits of the effect of buoyancy
on the heat transfer, Thus,

1.1-10%Pr2:3(Re! 23 E) (1 = 8.8 )/ Rel - TE)

B - . oV

. . (31)
1+ 4.3-10% (Re' -3 E)¥

Figure 1 shows the temperature distribution in universal coordinates with Pr = 0,7 for the forced flow
mode without buoyancy effect, and the free convection mode also in conditions of transition from the first to
the second mode, calculated by the relation

Tt = Ty - Y22 —vY), (32)

where T} is calculated by Eq. (1) and 3 is calculated by Eq. (31). In transition conditions, the curves corres-
ponding to the temperature distributions, e.g., 7, lie higher by comparison with curve 5, described by rela-
tion (1), This is due to a reduction of the turbulent heat transfer,

Now we write the final expression for the heat-transfer calculation, valid for Pr > 0,6 and Re > 3103,
over the whole range of variation of the determining parameters from the forced flow mode to the free convec-

tion mode:
1 1-8.3-10%(Re! -2 E)? T
{- Sy, = --12.7 l/_ <
1 +~4.2-10'Re” "E" " /1g (0,125 Re) 8

y [prm( | T:2104(Re! BE?(1 — 8.8 VRe‘~?5E_)) B 1—5.8-105(Re'~95E)2J)—'.

St =

o o} I<nf

(33)

- 43.10% (Re! 2E)" / 1-.83-10°(Re! BE2||




With large values of E (on the order of 10-% or more), relation (33) converts to the free convection mode
relation (23), and with small values of E (on the order of 1072 or less) it converts to relation (11) for forced
flow without the buoyancy effect.

In Fig. 3 the results of a calculation by Eq, (33) are compared with the experimental data of [15-18]. The
experimental data for Pr = 2-6, givenin [19] in other coordinates, unfortunately cannot be replotted on Fig. 3.
The calculation by the interpolation relation proposed in [19] (and approximating piecewise in St—E coordinates
the experimental data of {19])is shown in Fig, 3 for Pr = 6, The agreement between these data and the calcula-
tion by Eq. (33) may be noted.
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NOTATION

is the specific heat;

is the diameter of cylindrical channel;
is the thermal flux density;

is the temperature;

is the velocity;

is the frictional velocity;

is the longitudinal coordinate;

is the coordinate normal to the wall;
is the coefficient of volume expansion;
is the thickness of boundary layer;

is the kinematic viscosity;

is the density;

is the coefficient of frictional resistance;
is the tangential stress;

are the Grashof number;
is a dimensionless number;

is the Nusselt number;

is the Prandtl number;

are the Reynolds number;

is the Stanton number;

is the dimensionless temperature;
is the dimensionless velocity;

is the scaled length;

N = (Ve/V)Y is the dimensionless coordinate;
Subscripts

mmt is the mean mass temperature;

c is the value at the wall;

fc is the case of free convection;

T is the case of turbulent forced flow without buoyancy effect;
0 is the value on the axis;

is the unperturbed flow;

a line above a symbol denotes the average over the flow cross section.
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FORCED CONVECTION IN A PLANE CHANNEL
WITH RECESSES

Yu. A, Gavrilov, G. N, Dul'nev, UDC 536,253
and A, V, Sharkov

An approximate method is suggested for estimating the coefficient of convective heat exchange
in fluid flow in a flat channel with rectangular recesses in the walls.

We will consider convective heat exchange in steady, formed, fluid flow in a flat channel with rectangu-
lar recesses in the walls (Fig. 1). These recesses are identical, are equally spaced apart, and have dimen-
sions B and H commensurate with the width h of the channel. The convective heat-exchange coefficients are
to be determined.

We could not find the solution to such a problem in the literature, although much attention is paid to the
effect of roughness on heat exchange. Sandy roughness has been investigated in relatively great detail [1].
There are reports where roughness differing from the sandy kind is considered. For example, vortex flow in
small recesses is studied in [2]. Their dimensions are small in comparison with the channel width, and they
have almost no effect on the character of the main fluid flow. A coarser roughness in the form of a spiral
protuberance of Nichrome wire on the inner surface of a round pipe is adopted in [3]. The height of the pro-
tuberance is about one-tenth the pipe diameter. The experimentally derived dependence for calculating the
convective heat-exchange coefficient is valid for the particular case. A set of empirical equations for concrete
forms of surfaces in heat exchangers is given in [4, 5]. Data of an experimental investigation of convective
heat exchange in laminar and turbulent air flow in a channel with the geometrical parameters B = 13 mm, D =
15 mm, H = 5 mm, and h = 1-10 mm are presented in [6]. In addition to transverse recesses, the walls also
had longitudinal recesses. The experimental results for these channels were generalized in the form of cri-
terial dependence Nu = f(Re).

The longitudinal flow of a stream over a surface with a single recess or protuberance is analyzed in a
number of reports, such as [7-11]. A simplified flow model is chosen in this case and one or another approxi-
mate solution of the problem is given in accordance with the adopted assumptions. In [12] the flow model is
extended to a surface with protuberances arranged in a series,
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