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T U R B U L E N T  F O R C E D  F L O W  

IN V E R T I C A L  C H A N N E L S  IN 
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A.  F .  P o l y a k o v  

A N D  H E A T  E X C H A N G E  

C O N D I T I O N S  O F  

UDC 532.517.4:536.24 

Based on a unified approach,  data are  analyzed and general ized concerning the distributions of 
velocity and t empera tu re ,  fr ict ional  res is tance  and heat t r ans fe r  in the case of turbulent f r e e -  
convective flow, and forced flow in conditions of the significant effect of the gravitational field. 

Turbulent forced flow in ver t ical  channels f rom below upwards with heating, and f rom above downwards 
with cooling, is considered under the conditions of action of the gravitational field. We call the l imiting case 
of the very  s t rong effect of buoyancy, the "free convection mode. " 

F i r s t  of all, we consider  f ree  turbulent convection close to the ver t ical  sur faces  f rom the general  pos i -  
tions of the boundary flows. 

In the f i r s t  place,  we will be interested in a boundary condition of the second species ,  and therefore 
we descr ibe  the dimensionless numbers  related with the thermal  effect by the quantity qc. However,  heat ex-  
change in the case of turbulent forced flow is a lmost  no different with the boundary conditions qc = const and 
tc = const. Even the turbulent f ree  convective flow is quite conservat ive during transit ion f rom the boundary 
condition qc = const  to tc = const. In par t icu la r ,  the data of a number  of papers  confirm this,  showing the 
independence of the hea t - t r ans fe r  coefficient cz = qc/(tc - too) on the longitudinal coordinate x, i .e. ,  for a speci-  
fied constant value of qc or  tc the other quantity correspondingly is also constant. 

In Fig. 1 the tempera ture  distribution in the case of forced turbulent boundary flow of air  [1, 2] and tu r -  
bulent f ree  convective flow of a i r  along a ver t ical  plate [3] are  compared in the universal  coordinates T + - ~ .  
In [3] the tangential s t r e s s  on the wall Tcwas measured  so that the fr ict ion velocity v ,  is determined by the 
experimental  data. It can be seen that the tempera ture  distribution in universal  coordinates in the case of 
f ree  convection coincides with the t empera tu re  distr ibution in the case of forced flow without the effect of 
mass  forces .  This distribution is descr ibed by the following interpolation relat ion:  

--  2,21n (1 ~-0,45Pr TI) + (13Pr ~'3 - -  In Pr - -  4) [1-- exp (-- Pr 3/4 ~11 "5/50)], (1) 

corresponding with an accuracy  of �9 7%to the mos t  rel iable experimental  data assembled in [1, 2, 4, 5], and 
the resul ts  of calculations given in these papers ,  over  the range of P r  values f rom 0.02 to 64. 

In [6], for  P r  ~ 16, the relation 

is obtained, f rom which it follows that 

~C 
p [~g (tr - -  t=) x,12/3 = corot (2) 

Gr~ T+~/x~_ Pr ~ A = 0.18, (2a) 

Trans la ted  f rom Inzhenerno-Fiz icheski i  Zhurnal,  Vol. 35, No. 5, pp. 801-811, November ,  1978. Or ig i -  
nal ar t ic le  submitted November 24, 1977. 
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F ig .  1. T e m p e r a t u r e  d i s t r i b u t i o n  fo r  P r  = 0.7. E x p e r i m e n t a l  d a t a :  
1-3) f o r c e d  flow in t u b e s ,  Gr  ---0,  Re  = 7.1"104 [1], Re  = 2 .5 .104  [1], 
Re = 1 .8 .105  [2], r e s p e c t i v e l y ;  4) f r e e  convec t ive  s t r e a m l i n e  flow 
wi th  a v e r t i c a l  s u r f a c e  [3], Gr  x = 2 �9 10121 6) f o r c e d  f low,  Re = 9 .8 .  
103, E = 1 . 9 . 1 0  -8 [15]. C a l c u l a t i o n :  5) by Eq. (1), Gr  ~ 0; 7) by Eq. 
(30), Re = 104, E = 1 . 9 . 1 0  -8. 

F ig .  2. V e l o c i t y  d i s t r i b u t i o n :  1) Gr  = 0, c a l cu l a t i on  by Eq. (7a). E x -  
p e r i m e n t a l  da t a :  2-4)  f o r c e d  flow in t u b e s ,  Re = 5 .103 ,  P r  = 0.7; E = 
5.1 �9 10 -8 [17], 1 . 8 . 1 0  -7 [16], 1 .8-  10 -7 [15], r e s p e c t i v e l y ;  6P) f r ee  c o n -  
v e c t i v e  s t r e a m l i n e  flow with  a v e r t i c a l  s u r f a c e  [3], Gr  x = 2 �9 1012. C a l -  
cu l a t i on :  2P,  3P) b y  r e l a t i o n  (7b) f o r  the  p a r a m e t e r s  c o r r e s p o n d i n g  

to  t he  e x p e r i m e n t a l  d a t a  2, 3; 5P) b y  Eq.  (7b) f o r  E = 1 0 e ;  6P) b y  Eq.  (7). 

T~ - 2.21n ri0 7- 12.7Pr2:S - -  6. ( la)  

i s  ob t a ined  f r o m  Eq. (1) fo r  l a r g e  v a l u e s  of r/ and P r  > 0.6. F r o m  the da ta  of [3] fo r  a i r  (Pr  = 0.7) ,  i t  fo l lows  
tha t  A -- 0.07. 

T h u s ,  A is  a func t ion  of the P r  n u m b e r ,  which  on the b a s i s  of t h e s e  da ta  and da ta  on the h e a t  t r a n s f e r  
can  be d e t e r m i n e d  a s :  

Gr~,. T+'x5 Pr = 0.1 Pr L'~. (3) 

The  va lue  of the d i m e n s i o n l e s s  t e m p e r a t u r e  d i f f e r e n c e  be tween  the w a l l  and l iqu id  a t  a d i s t a n c e  f r o m  the 
w a l l  T + i s  r e l a t e d  wi th  the N u s s e l t  n u m b e r  by the e x p r e s s i o n  

Nu x _. qcx Pr x_ 
(t e - -  t| )~ r ~  (4) 

On the b a s i s  of the  da ta  g iven in [3, 7], the  o u t e r  b o u n d a r y  of the f r e e - c o n v e c t i v e  t u r b u l e n t  b o u n d a r y  
l a y e r  ~0 can be d e s c r i b e d  by the r e l a t i o n  

rio = 0 . 1 6 G r a ,  = 0.28Gr~ 4 Pr .,2. (5) 

F r o m  Eqs .  (3) and (4) fo r  the Nux n u m b e r  we ob t a in  

Gr~'4 ,T+~S/4 Nu~:~ 1.8Pr -~'3 , .'~ 0) �9 (6) 

The  c a l c u l a t i o n  of the Nu x n u m b e r  by r e l a t i o n s  (6), (2a), and (5) c o i n c i d e s  w e l l  wi th  the e x p e r i m e n t a l  
da ta  of [3, 6, 8],  o b t a i n e d  o v e r  the r a n g e  of P r  v a l u e s  f r o m  0.7 to 16. In th i s  c a s e ,  the  p h y s i c a l  p r o p e r t i e s  
a r e  chosen  fo r  a t e m p e r a t u r e  equa l  to the a r i t h m e t i c  m e a n  va lue  of the  t e m p e r a t u r e s  of the w a l l  and a t  a d i s -  
t a n c e  f r o m  the s u r f a c e .  

U s i n g  the r e s u l t s  of [3, 7], the v e l o c i t y  d i s t r i b u t i o n  can be a p p r o x i m a t e d  by the fo l lowing  r e l a t i o n :  

u + :: u ; - -  2.sY0n V ' . 2 ) - ( 2 . 5 1 n %  -. 0. )/d--0;231n Y) co,  >0.01  / 
((12Y)- for "~ < 0.015] ' (7) 
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w h e r e  the v e l o c i t y  d i s t r i b u t i o n  UCf f o r  f o r c e d  f low in u n i v e r s a l  c o o r d i n a t e s  i s  d e s c r i b e d  by a r e l a t i o n  which  
d o e s  not  t ake  a c c o u n t  of  a c e r t a i n  a d d i t i o n a l  e f f e c t  of the Re  n u m b e r  c l o s e  to the a x i s :  

U~ = 2.51n (1 + 0.4~1) + 7.8 [ 1-- exp ( - -  II" 7147)1. (Ta) 

The velocity profile, calculated by interpolation equation (7), is compared in Fig. 2 with the experimen- 
tal data of [3]. 

Relation (3), connecting the dynamic characteristics of the boundary free-convective turbulent flow, can 
be written not in terms of the longitudinal coordinate x (parameters Gr x and x+), but in terms of the thickness 
of the boundary layer 5 (parameters Gr and 77o). From this relation, for the case of flow in a channel in the 
free convective mode, we determine the dimensionless radius 77o = v,d/2v: 

TIo = ( ~  Gr/1.6 Pr 4 / 3) 1 / 4 (8) 

First of all we find the relation for the heat transfer and the frictional resistance in circular tubes, in 
the free convection mode. Then, we generalize them and the data obtained earlier for the small effect of 
buoyancy [9], on the case of change of the defining parameters from forced flow conditions to the free convec- 
tion mode. 

The free convection mode in the case of forced flow in vertical channels will be defined as the conditions 
with combination of the direction of forced flow and the thermal boundary conditions, contributing to the de- 
velopment of free-convective flow (e.g., flow from below upwards in heated tubes), when relation (8), which 
is characteristic for free-convective turbulent flow, is satisfied. 

Let us consider the flow at a distance from the origin of heating (cooling) for x/d > 40, when the heat-ex- 
change conditions for turbulent flow can be assumed to be stabilized. 

As shown above, the distribution of the dimensionless temperature T + for free convection and for forced 
flow is described by one and the same expression (1). Consequently, there is every basis for supposing that 
this same expression will describe the temperature distribution also in the free convection mode in the case 
of flow in a channel. 

We find the velocity distribution in the free convection mode by the relation, similar to Eq. (7): 

U § = U~ + b [2.5Y (In Y - -  2) - -  (2.5ln ~10 + 0,5) (1 +0.23  In Y)]. (7b) 

By c o m p a r i s o n  wi th  Eq.  (7), we i n t r o d u c e  the c o e f f i c i e n t  b into Eq.  (7b), equa l  to z e r o  fo r  f o r c e d  t u r b u l e n t  f low 
and wi th  a c e r t a i n  l i m i t i n g  v a l u e  bfc in the f r e e  convec t ion  m o d e .  

We d e t e r m i n e  the Stanton n u m b e r  by the t e m p e r a t u r e  and v e l o c i t y  d i s t r i b u t i o n s  we have  found,  f r o m  the 
equation 

I 

I - 2 ~ u + r  § ( I - -  Y) dY. (9) 
St J 

0 

For integration, we use the simplified expression for the temperature distribution 

:= 2.21n~ + 12,7Pr ~ / 3 - 6  

and in the  v e l o c i t y  d i s t r i b u t i o n  (7b), we  use  the s i m p l i f i e d  e x p r e s s i o n  fo r  

U + = 2.51n zq ~ 5.5. 

(lb) 

(7c) 

Subs t i t u t i ng  Eqs .  ( lb ) ,  (7b), and (7c) in Eq.  (9), i n t e g r a t i n g ,  and c a r r y i n g  out  t r a n s f o r m a t i o n s  and p e r -  
m i s s i b l e  s i m p l i f i c a t i o n s ,  we  ob ta in  

i/St = 5.51n z ~0 - i  31.8 (Pr 2,;3 - -  0.5) In 110 - -  b [3,61n 2 T1 o + 20.3 ( P r  2/3 - -  0.37) (In ~, -,- 1.7) - -  9.4]. (10) 

For b = 0, expression (10) describes the heat transfer for forced flow, without the effect of mass forces 
st/r, and for b = bfc - the heat transfer in the free convection mode. The results of the calculation by Eq. (10) 
for Pr > 0.6 and b = 0 and correspond well with the results of the calculation by the equation [10] 

U8 (11) 
St~ =- 900 

1 ' 12.7 ],/-~g (Pr ~/3 - -  1) 
R e  ' 
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Fig. 3. Dependence of the St number  on E. I: P r  number  of 6: 1,2,3,4,5,) exper imental  data 
[181 for  Re= (1.8-2.6).  10 ~, (3-5.2)- 10 a, (6-8).  10 ~, (8.5-10.5).  10 ~, and (1.2-1.5)- 10 ~, r e s p e c -  
tively; 1.1) calculated according to (33) for  ~e= 104; 1.2) calculated according to (33) for  Re = 
5.10~; L3) calculated according to (23); L4) calculated according to (11) for  Re=104; L5) 
calculat ion of the boundary of the initial effect of buoyancy according to the dependence given 
in [9]; 1.6) calculation according to the interpolation dependence obtained in [19] for  Re= 300; 
1.7) calculat ion according to [19] fo r  Re= 2 . 1 0  ~. II: P r  number of 0.7: 6, 7, 8, 9) exper imental  
data of [16] fo r  Re= 500, (1-2) .  10 ~, (4-5) �9 103, (0.9-1.3) �9 104; 10, 11) exper imental  data of [15] 
for  Re= (5-7).  103 and 104, respect ively;  12, 13) exper imental  data of [17] for  R e = 5 . 1 0  ~ and 
10 ~, respect ively;  II.1) calculation according to (33) for  R e = 5 .  103; 11.2) calculation according 
to (33) for  Re= 104; II.3) calculat ion according to (23); II.4) calculation according to (11) for  
Re = 5 �9 103; II.5) calculation of the boundary of the initial effect  of buoyancy according to the 
dependence given in [9]; IL6) calculation according to the dependence for  the v i s cous -g rav i -  
tational reg ime [14], Re= 500; II.7) calculation according to (23); II.8) calculation according to 
the dependence for  l aminar  flow, Nu=4.36,  X > 0.07; II.9) boundary of the t ransi t ion f rom 
viscous-gravi ta t ional  to turbulent  flow, calculated according to the dependence obtained in [14]. 

In this case ,  the coefficient  of f r ic t ional  r es i s t ance  ~ is calculated by one and the same relat ion,  e .g. ,  
by Filonenko's  equation [11 ], ! ("e i 

~,-= 1.821g --~- 
From  the equation 

(12) 

I 

~v- :.= 1 2cl = ]f8:~-. = 2 i U+RdR, 
0 

using Eqs. (7b) and (7c), we determine the coefficient of f r ic t ional  res i s tance  ~: 

}/8-~:- = 2.5 (In 2%) -- 1.65b (In 5.2qo ). (13) 

Express ing  ~0 in t e rms  of the coefficient of fr ic t ional  res i s tance  

Re /-c~- R e ] / / ' ?  
% = - - 2 -  [ '  2 - 2 ' (14) 

we wri te  Eq. (13) in the form 

i 8 .~ --  2.5 (l -- 0.66b) ln I'~ 8 : 2.5 (l -- 0.66b) In(Re 2)-- 1.8(1--1.5b). (15) 

When b = 0, Eq. (15) r ep re sen t s  the relat ion for  the coefficient  of fr ic t ional  r e s i s t ance ,  obtained by L. Prandtl  
(see, e .g . ,  [12]), which descr ibes  well the exper imenta l  data in the range 2.8" 103 < Re < 107. 

In the range of variat ion of ~ f rom 10 -3 to 0.3, the resul ts  of the calculations by Eq. (15) can be approxi-  
mated by the express ion  

Re ] -a  ~=  [ 1 . 8 2 ( 1 - - 0 . 6 6 b ) ( l g - ~ ) .  (16) 

which, for  b = 0, conver ts  to Eq. (12). 

Express ing  the quantity lnt/0 f rom Eq. (13) and substituting it in Eq. (10), we find the relat ion between the 
St number and the coefficient  ~: 
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~/8  
S t =  0.88 VZ-8~  [ 1 . 2 b ]  (17) 

1 - -  0.66b q- 12.7(Pr 2/3 --0.88) + 1 - -  0.66b 

Values of the St number, calculated by Eq. (17) for b = 0 and Pr > 0.6, agree well with the values deter- 
mined by Eq. (11). Bearing this in mind, we represent Eq. (17) in the form corresponding to the limiting transi- 
tion for b = 0 to the well-lmown previous relation (11), i.e., 

st  = ~/8 (18) 
1 + Re/900 + 12.7 Pr 2 / s -  I q- 1 - -  0.66b 
1 - -  0,66b 

(12): 
The coefficient of fr ict ional  res is tance  in the free convection mode can be determined f rom Eqs. (8) and 

w h e r e  E = G r / P r  . R e  4. 

~f~ 
# 

= 3.2 1 / /  --g- v F / ~ 7 ~  E,  (19 )  

In the range 0.6 < Pr < I00 and i00 < Re < 105, calculations by Eq. (19) can be closely approximated in 
the form 

~fc = 120 ~ F .  (20) 

We express  the quantity b f rom Eq. (16): 

b=1.52 ( l  0.55 ) 
v"~- lg O. 125 Re , " (21) 

Substituting the value of ~fc f rom Eq. (20) in Eq. (21), we obtain the express ion for b in the free convection 
mode: 

( / bfc~l .52 1 - -  El/,tlg(Re/8) . (22) 

Substituting in Eq. (18) express ion (20) and (22), we obtain the relat ion for  the Stfc number in the free convec-  
tion mode: 

E'/4 (23) 
Stfc : 1.33 0g Re/8) : 3.3 (Pr 2Is --0,7) " 

Figure 3 shows the change of St as a function of the pa rame te r  E, for  values of P r  = 0.7 and Pr  = 6. In 
the case of P r  numbers  ~1,  a marked additional dependence on the Re number is observed,  in addition to that 
taken into account in the quantity E. For  P r  > 5, the additional dependence on the Re number  is insignificant. 
For  the values of P r  = 6 shown in the graph,  the curves  for  Re = 500 and Re = 104 are  very  little different and 
therefore  only one line is shown. With relat ively large values of E, a sa t i s fac tory  agreement  with the exper i -  
mental data can be seen. With reduction of E, the lines calculated by Eq. (23) a re  above the experimental  
data. This is because with a relat ively small  degree of effect of the gravitational field on the turbulent forced 
flow in ver t ical  boundary flows, as was shown in [9], the buoyancy fo rces  in the f i r s t  place affect the turbu-  
lence,  which in the case being considered leads to reduction of the turbulent t ransfer .  However,  with in- 
c rease  of E,  the effect of buoyancy on the turbulence is weakened and its effects s tar ts  to appear  more  and 
more  direct ly  on the averaged flow, leading to the free convection mode. Thus,  ff there were  no buoyancy 
effect on the turbulence,  then the St number would vary  according to the relat ions corresponding to the dashed 
lines. If, fur ther ,  the Re number  corresponds  to the laminar  flow mode,  in conditions where the gravitational 
field effect is absent,  then the effect of buoyancy will lead to the development of a v iscous-gravi ta t ional  flow 
mechanism,  which af ter  the breakdown of stability will convert  to the turbulent f ree  convection mode. This 
situation is shown in Fig. 3 for  the case P r  = 0.7, Re = 500, and X = (1/Pe)(x/d) > 0.07. It is shown in [13] that 
transit ion in this case f rom viscous-gravi ta t ional  flow to turbulent flow takes place without a sharp change of 
heat t ransfer .  The boundary of the transit ion can be determined by the relation given in [14]. 
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F i g .  4. G r a p h  of the  c o e f f i c i e n t  of 
f r i c t i o n a l  r e s i s t a n c e  vs  the p a r a m -  
e t e r  E:  1) e x p e r i m e n t a l  da t a  of [16] 
f o r  P r  = 0.7 and Re = (3.6-7) �9 102; 2) 
c a l c u l a t i o n  by Eq. (20); 3,  4) c a l c u l a -  
t ion by Eq.  (28) fo r  Re  = 5 .103  and 
104; 5) l i m i t  of s t a r t  of buoyancy  e f -  
f e c t  by Eq. (26). 

A s  shown in [9], a s  a r e s u l t  of the  a c t i o n  of t h e r m o g r a v i t a t i o n a l  f o r c e s  on t u r b u l e n t  t r a n s f e r ,  the v a l u e s  
of  the v e l o c i t y ,  r e p r e s e n t e d  in u n i v e r s a l  c o o r d i n a t e s ,  a r e  i n c r e a s e d  in the c e n t r a l  p a r t  of the f low. A s  a r e -  
su l t  of  t h i s ,  the  St n u m b e r  i s  d e c r e a s e d .  If ,  in the  t r a n s i t i o n  r e g i o n  f r o m  the f o r c e d  t u r b u l e n t  f low mode  to 
the t u r b u l e n t  f r e e  convec t ion  m o d e ,  we use  e x p r e s s i o n  (7c) f o r  d e s c r i b i n g  the v e l o c i t y  p r o f i l e ,  then,  by s e l e c t -  
ing  v a l u e s  of the p a r a m e t e r  b in an a p p r o p r i a t e  w a y ,  the  change  of the v e l o c i t y  p r o f i l e  due to the e f f ec t  of b u o y -  
ancy on the t u r b u l e n t  t r a n s f e r  can be t aken  into a c c oun t  a p p r o x i m a t e l y .  

We r e p r e s e n t  the r e l a t i o n  fo r  the p a r a m e t e r  b in the  f o r m  of a p r o d u c t  

b ~ m b f c  , (24) 

w h e r e  m = 1 in the f r e e  convec t ion  mode  and m = 0 fo r  f o r c e d  f low,  wi thou t  the e f f ec t  of buoyancy .  

By u s i n g  e x p r e s s i o n s  (24), (22), and (16), we ob ta in  a r e l a t i o n  fo r  the f r i c t i o n a l  r e s i s t a n c e  in the  c a s e  of 
t u r b u l e n t  buoyan t  (descend ing)  f low in v e r t i c a l  h e a t e d  (cooled) t ubes  in the c a s e  x /d  > 40: 

E 

Re ' 0.05m[- (25) 

With  m = 0 , - r e l a t i o n  (25) c o n v e r t s  to Eq.  (12), and with  m = i i t  c o n v e r t s  to Eq.  (20). 

In [91 the  l i m i t s  of the s t a r t  of the  e f f ec t  of t h e r m o g r a v i t a t i o n a l  f o r c e s  on the f r i c t i o n a l  r e s i s t a n c e  in the  
c a s e  of f o r c e d  t u r b u l e n t  f low in v e r t i c a l  tubes  a r e  d e t e r m i n e d .  We w r i t e  the  r e l a t i o n  fo r  the  l i m i t i n g  G r a s h o f  
n u m b e r  ob t a ined  in i t ,  in the  f o r m  

El ~ 2. 104,.Re 1.25, (26) 

w h e r e  E 1 c o r r e s p o n d s  to the l i m i t i n g  va lue  of the  p a r a m e t e r  E = G r / P r .  Re  4, fo r  which  t h e r m o g r a v i t a t i o n  
s t a r t s  to n o t i c e a b l y  ( m o r e  than lg0) a f f ec t  the  f r i c t i o n a l  r e s i s t a n c e .  When  E < E l ,  t h i s  e f f ec t  is  n e g l i g i b l y  
s m a l l  and m = 0. 

Us ing  the l i m i t i n g  r e l a t i o n s  be ing  c o n s i d e r e d  fo r  ~ and the v e l o c i t y  d i s t r i b u t i o n  [15-17] ,  the  r e l a t i o n  

m = (E E,) 2, [(E E,) ~- --  30] (27) 

i s  ob t a ined  fo r  the p a r a m e t e r  m.  

Us ing  e x p r e s s i o n s  (26) and (27), we ob t a in  f r o m  Eq. (25) the r e l a t i o n  fo r  the coe f f i c i en t  of f r i c t i o n a l  r e -  
s i s t a n c e  va l id  for  P r  > 0.6 and Re > 3 . 1 0 3 ,  o v e r  the whole  r a n g e  of  d e t e r m i n i n g  p a r a m e t e r s ,  f r o m  the f o r c e d  
flow mode  to the convec t ion  m o d e ,  ]2 

1 . 8 2  lg - 

(28) 
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Figure 4 shows the variat ion of the coefficient ~ as a function of the pa rame te r  E, calculated for  two 
values of Re = 5 �9 103 and 104. The agreement  with the experimental  data of [16], obtained for the free con- 
vection mode, is sa t isfactory.  The quantity ~ for E < E l corresponds  to that calculated by Filonenko's  
equation [11]. In the region of transit ion f rom forced flow conditions to f ree convection conditions, ~ < ~T and 

< ~fc, and they depend significantly on both the Re number and on E. Values of the coefficient of fr ict ional 
res is tance  in the transi t ion region are  less  than in the limiting cases ,  due to the reduction of turbulent t ransfer  
of momentum as a resul t  of the effect in this region of buoyancy on the turbulence. 

Relation (7b), taking account of Eqs. (Ta), (22), (24), (26), and (27), descr ibes  approximately the velo-  
city distribution over the whole range f rom "purely" forced flow to the free convection mode. Figure 2 shows 
the velocity distr ibutions for Re = 5.103, calculated by these relat ions.  The curve 6P corresponds  to the 
free convection mode. The line 2P cor responds  to the conditions of the predominant  effect of buoyancy.on tu r -  
bulent t ransfer .  The calculated curves  2P and 3P coincide with the experimental  data of [15-17]. The exper i -  
mental data indicate a more  complex variat ion of the velocity profile by comparison with the calculated curve. 
The maxima on the velocity profi les  occur  considerably ea r l i e r  than the calculation by relation (7b) gives. The 
deviation of the calculated values f rom the experimental  values at certain points in the core of the flow reaches  
25070. However,  the design relation (7b) cor rec t ly  shows the tendency of the velocity profile variat ion by com-  
parison with the case of i so thermal  flow (curve 1) as a function of the effect of buoyancy on the turbulent t r ans -  
fer  and direct ly  on the averaged flow. 

In the case of the action of the gravitational field on the turbulent t ransfer ,  the tempera ture  profi le in 
the case of a low degree of the buoyancy effect is descr ibed by the relation obtained in [9] 

T ~ - T~ - lOGr 
Pr Re~ q' (29) 

where T~ is the dimensionless  t empera ture  in the case of "purely" forced flow, descr ibed by Eq. (1). 

In o rde r  to find the St number  by Eq. (9), together  with Eqs. (7b) and (7c) for the velocity profi le,  we use 
a relation represented  in the form 

T: =2 .21nq  : 12.7Pr -~:~-6 i- [3 Y" (2 --  Y) (30) 

for  the t empera tu re  profi le ,  where the value n = 2/3 is selected on the basis of the experimental  data for the 
t empera tu re  distr ibution and heat t r ans fe r ,  and the pa rame te r  3 = 0 in both the free convection mode and for 
forced flow without the effect of buoyancy. 

The express ion for/3 is determined on the basis of experimental  data for  the tempera ture  and hea t - t r an s -  
fer  distribution in [15-18], and also the relat ions obtained in [9], descr ibing the l imits  of the effect of buoyancy 
on the heat t ransfer .  Thus,  

1.I. 101~ 3(Re ~ .-~ E) 3 (1 : 8.8 ]fReq.-%E} 
. . . . .  (31) 

I ..'- 4 . 3 . 1 0 "  (Re j .-~5 E)4 

Figure 1 shows the tempera ture  distr ibution in universal  coordinates with Pr  = 0.7 for the forced flow 
mode without buoyancy effect,  and the free convection mode also in conditions of t ransi t ion f rom the f i r s t  to 
the second mode,  calculated by the relat ion 

T + = Y ~  -:- ~Y-~ 3 (2 --  Y), (32) 

where T~ is calculated by Eq. (1) and ~ is calculated by Eq. (31). In transit ion conditions, the curves  c o r r e s -  
ponding to the t empera tu re  distr ibut ions,  e .g. ,  7, lie higher by comparison with curve 5, descr ibed by r e l a -  
tion (1). This is due to a reduction of the turbulent heat t ransfer .  

Now we write the final express ion for the hea t - t r ans fe r  calculation, valid for  Pr  > 0.6 and Re > 3 �9 103, 
over  the whole range of variat ion of the determining pa rame te r s  f rom the forced flow mode to the free convec-  
tion mode: 

{ 1 -I- 8.3-10s (Re I .~ E) 2 
S t =  8 1T4.2.104Re"~E:  4 ;lg (0,125 Re) 

v [p r23  ( 1 -! 7"2"10S(Re"25E)3(1T8.8 ]fRe"2gE) / 
~" - i ~-4.3.10 ~i i-Re' "~Y-E) r . . . . .  / -- 

--12.7 f-~V8 ~- :< 

1 - -  5 .8" 103 (Re 1.2~E)" [I - z  

I 8.3.10, R ,  Jf �9 

(33) 
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With large values of E (on the o rder  of 10 -~ or more) ,  relation (33) converts  to the free convection mode 
relation (23), and with small values of E (on the o rder  of 10 -9 or less) it converts  to relation (11) for forced 
flow without the buoyancy effect. 

In Fig. 3 the resul ts  of a calculation by Eq. (33) are compared with the experimental  data of [15-18]. The 
experimental  data for P r  = 2-6, given in [19] in other coordinates ,  unfortunately cannot be replotted on Fig. 3. 
The calculation by the interpolation relation proposed in [19] (and approximating piecewise in S t - E  coordinates 
the experimental  data of [19]) is shown in Fig. 3 for Pr  = 6. The agreement  between these data and the calcula-  
tion by Eq. (33) may be noted. 

Cp 
d 
q 
t 
U 

Vat = ~ / ~ T P -  
X 

Y 

6 

P 

T 

G r  A t  --- g~ax3(tc - t ~ / u ~  G r  x = 
g C x n q J ~ 2 X ,  G r  = gCd4qc, '~2~ 
E = gu~e/oep~ 4= Gr /Pr  Re 4 

Nux = qcx/(t c - t~)~., Nu = 
qcd/(tc - tmmt)X 
P r  
Re = ~d/v, Re ,  = v.d/v 
St = Nu/Pr  Re,  
T + =  [ ( t c -  t)/qclPCpV, 
U + = u / v ,  

X = (1/PrRe) (x/d) 
= (v,/v)y 

S u b s c r i p t s  

mint 
c 
f c  

T 
0 

N O T A T I O N  

is the specific heat; 
is the d iameter  of cylindrical  channel; 
is the thermal  flux density; 
ts the tempera ture ;  
is the velocity;  
is the fr ict ional  velocity;  
is the longitudinal coordinate;  
~s the coordinate normal  to the wall; 
~s the coefficient of volume expansion; 
~s the thickness of boundary layer ;  
is the kinematic viscosi ty ;  
Is the density;  
Ls the coefficient of fr ict ional  res i s tance ;  
~s the tangential s t r e s s ;  

a re  the Grashof  number;  
is a d imensionless  number;  

is the Nussel t  number;  
is the Prandt l  number;  
are  the Reynolds number;  
is the Stanton number;  
is the dimensionless  t empera ture ;  
is the dimensionless  velocity;  
is the scaled length; 
is the dimensionless  coordinate;  

is the mean mass  tempera ture ;  
is the value at the wall; 
is the case of free convection; 
is the case of turbulent forced flow without buoyancy effect; 
is the value on the axis;  
is the unperturbed flow; 

a line above a symbol denotes the average over  the flow c ross  section. 

l e  

2. 

3.  

4. 
5. 

6. 

L I T E R A T U R E  C I T E D  

R. E. Johnk and T. J. Hanrat ty,  Chem. Eng. Sci., 17, 867 (1962). 
B. S. Petukhov, A. F. Polyakov, and V. A. Kuleshov, in: Proceedings  of Moscow Power Institute. 
Proper t i es  of Working Substances and Heat Exchange P r o c e s s e s  [in Russian] ,  No. 313, Moscow (1976). 
J. Coutanceau, Int. J. Heat-Mass T rans f e r ,  12, 753 (1969). 
B. A. Kader and A. M. Jaglom,  Int. J. Heat -Mass  T r a n s f e r ,  15, 2329 (1972). 
P. L. Maksin, B. S. Petukhov, and A. F. Polyakov, in: Heat-Mass  Exchange-V [in Russian] ,  Vol. 1, 
Pt. 1, Minsk {1976). 
S. S. Eutateladze,  A. G. Kirdyashkin, and V. P. Ivakin, Dokl. Akad. Nauk SSSR, 217, No. 6 (1974). 

129"~ 



7. H. Kato,  N. Mishiwaki,  and M. H i ra t a ,  Int. J. H e a t - M a s s  T r a n s f e r ,  1_1, 1117 (1968). 
8. Vlit and Laiyu,  Tep loperedacha ,  No. 4 (1969). 
9. A . F .  Polyakov,  Teplofiz.  Vys. T e m p . ,  1_! , No. 1 (1973). 

10. B . S .  Petukhov,  L. G. Lenin,  and S. A. Kovalev ,  Heat  Exchange in Nuc lea r  Power  Ins ta l la t ions  [in 
Russ ian] ,  Atomizdat ,  Moscow (1974). 

11. G . K .  Filonenko,  Tep loenerge t ika ,  No. 4 (1954). 
12. H. Shlichting, Boundary Laye r  Theory ,  McGraw-Hil l  (1968). 
13. L . F .  Scheele and T. J. Hanra t ty ,  A. I. Ch. E. J . ,  9,  No. 2 (1963). 
14. B . S .  Petukhov,  A. F. Polyakov,  and B. K. Strigin,  in: Heat  and Mass T r a n s f e r  [in Russ ian] ,  Vol. 1, 

l~nergiya, Moscow (1968). 
15. A. Ste iner ,  "Study of the r e v e r s e  t rans i t ion  of a turbulent  flow under  the action of an Arch imed ian  f o r c e , "  

Doctor  Engineer  Thes i s ,  Facult~ des Sciences de P a r i s  (1970). 
16. A. Mreiden,  "Study of the flow s t ruc tu re  and heat  t r a n s f e r  by mixed convection in a tube of c i r cu l a r  

c r o s s  s e c t i o n , '  Doc to r -Eng inee r  Thes i s ,  Facult~ des Sciences de P a r i s  (1968). 
17. Kapp,  Konnop, and B~r, Teploperedacha ,  9_.55, No. 4 (1973). 
18. A . R .  Sarabi ,  "Lamina r i sa t ion  under the ef fec t  of natural  convection in an ascending f low,"  Doctor  

Engineer  Th es i s ,  Facult~ des Sciences de P a r i s  (1971). 
19. B . S .  Petukhov and B. K. Strigin,  Teplofiz .  Vys. T e m p . ,  ~ No. 5 (1968). 

F O R C E D  C O N V E C T I O N  IN A P L A N E  C H A N N E L  

W I T H  R E C E S S E S  

Y u .  A .  G a v r i l o v ,  G.  N .  D u l ' n e v ,  
a n d  A .  V .  S h a r k o v  

UDC 536.253 

An approx imate  method is suggested for  es t imat ing  the coefficient  of convective heat  exchange 
in fluid flow in a f lat  channel with r ec t angu la r  r e c e s s e s  in the walls .  

We will consider  convective heat  exchange in s teady,  f o r m e d ,  fluid flow in a f lat  channel with r ec t angu-  
l a r  r e c e s s e s  in the walls  (Fig. 1). These  r e c e s s e s  a re  identical ,  a re  equally spaced apa r t ,  and have d imen-  
sions B and H commensu ra t e  with the width h of the channel. The convective hea t -exchange  coeff icients  a re  
to be de te rmined .  

We could not find the solution to such a p rob lem in the l i t e r a t u r e ,  although much attention is paid to the 
effect  of roughness  on heat  exchange.  Sandy roughness  has been invest igated in re la t ive ly  g rea t  detail  [1]. 
There  a re  r e p o r t s  where  roughness  d i f fer ing f r o m  the sandy kind is considered.  Fo r  example ,  vor tex  flow in 
smal l  r e c e s s e s  is studied in [2]. The i r  d imensions  a re  smal l  in compar i son  with the channel width, and they 
have a lmos t  no ef fec t  on the c h a r a c t e r  of the main fluid flow. A c o a r s e r  roughness  in the f o r m  of a sp i ra l  
p ro tuberance  of Nichrome wi re  on the inner sur face  of a round pipe is adopted in [3]. The height of the p r o -  
tuberance  is about one-tenth the pipe d iamete r .  The exper imenta l ly  der ived  dependence for  calculat ing the 
convective hea t -exchange  coefficient  is valid for  the pa r t i cu la r  case .  A set  of emp i r i ca l  equations for  concre te  
f o r m s  of su r f aces  in heat  exchangers  is given in [4, 5]. Data of an exper imen ta l  investigation of convective 
heat  exchange in l am i na r  and turbulent  a i r  flow in a channel with the geomet r i ca l  p a r a m e t e r s  B = 13 ram,  D = 
15 m m ,  H = 5 m m ,  and h = 1-10 m m  are  p resen ted  in [6]. In addition to t r a n s v e r s e  r e c e s s e s ,  the walls  a lso  
had longitudinal r e c e s s e s .  The exper imenta l  r e su l t s  for  these channels were  genera l ized  in the fo rm of c r i -  
t e r ia l  dependence Nu = f(Re). 

The longitudinal flow of a s t r e a m  over  a su r face  with a single r e c e s s  or  p ro tuberance  is analyzed in a 
number  of r e p o r t s ,  such as [7-11]. A s implif ied flow model is chosen in this case  and one or  ano ther  approx i -  
mate  solution of the p rob l em  is given in accordance  with the adopted assumpt ions .  In [12] the flow model is 
extended to a sur face  with p ro tube rances  a r r anged  in a s e r i e s .  

T rans l a t ed  f r o m  Inzhenerno-F iz ichesk i i  Zhurnal ,  Vol. 35, No. 5, pp. 812-819, N o v e m b e r ,  1978. Or ig i -  
nal a r t i c le  submit ted October  5, 1977. 
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